ФУНКЦИОНАЛЬНЫЕ ХАРАКТЕРИСТИКИ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ WHEELIES

Листов 4

Оглавление

1.	Ha	значение программного обеспечения Wheelies	 3
2.	Об	ласть применения	3
		тикциональные возможности	
3.	.1.	Автономное управление парком дронов	3
3.	.2.	Расширенные сценарии использования	3
3.	.3.	Уникальные технологии	3
3.	.4.	Реалтайм-мониторинг дронов	4
3.	.5.	Безопасность и контроль доступа	4
3.	.6.	Автоматическое хранение данных	4
		Гибкая система модульного расширения	
		аимодействие с дронами и требования для интеграции	

1. Назначение программного обеспечения Wheelies

Wheelies — универсальная платформа управления беспилотным транспортным средством. Предназначена для управления одним или несколькими дронами разного вида через единый интерфейс, в рамках одной компании.

Платформа Wheelies позволяет запускать дроны на миссии без участия оператора, оптимизировать их маршруты с учетом препятствий и погодных условий, а также интегрироваться с ROS2 для расширенной совместимости. Платформа поддерживает нейросетевые технологии для распознавания объектов, автономного полета в условиях отсутствия GPS и обхода препятствий в реальном времени.

2. Область применения

- Логистика: автоматизированная доставка грузов с использованием воздушных и наземных дронов.
- Агропромышленный комплекс: мониторинг полей, детекция болезней растений.
- Экология: контроль загрязнения водоемов, мониторинг лесных массивов.
- Охрана и безопасность: патрулирование территорий, видеонаблюдение.
- Военные и специальные миссии: работа в условиях отсутствия GPS, скрытность передвижения.

3. Функциональные возможности

3.1. Автономное управление парком дронов

- Запуск миссий без участия оператора.
- Возможность передачи задач между дронами.
- Автоматическое построение маршрутов.

3.2. Расширенные сценарии использования

- Распознавание объектов с применением нейросетей.
- Использование дронов в агросекторе для мониторинга посевов.
- Интеграция с логистическими решениями.

3.3. Уникальные технологии

- Автооблет препятствий в реальном времени.
- Полет в условиях отсутствия GPS.
- Предотвращение столкновений с объектами.

3.4. Реалтайм-мониторинг дронов

- Передача видео с нескольких камер.
- Отображение телеметрии (курс, скорость, высота).
- Сохранение данных в случае потери связи.

3.5. Безопасность и контроль доступа

- Ограничение доступа к данным миссий.
- Шифрование и хранение информации.
- Возможность хранения данных на сервере клиента.

3.6. Автоматическое хранение данных

- Облачное и локальное хранение информации.
- Интеграция с сервисами аналитики и машинного обучения.

3.7. Гибкая система модульного расширения

- Возможность добавления новых технологий и алгоритмов.
- Интеграция с различными нейросетевыми моделями.

4. Взаимодействие с дронами и требования для интеграции

- Поддержка различных типов дронов (воздушные, наземные, водные, подводные).
- Совместимость с ArduPilot и INAV.
- Использование бортового компьютера для обработки данных.
- Альтернативное решение базовая станция Wheelies HUB.